Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(12): 4409-4424, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793238

RESUMO

Huntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains. To extend these findings to a model system expressing human HTT, we took advantage of YAC128 mice that are transgenic for a yeast artificial chromosome carrying human HTT with an expanded CAG repeat. We discovered that the HTT1a transcript could be detected throughout the brains of YAC128 mice. We implemented RNAscope to visualize HTT transcripts at the single molecule level and found that full-length HTT and HTT1a were retained together in large nuclear RNA clusters, as well as being present as single transcripts in the cytoplasm. Homogeneous time-resolved fluorescence analysis demonstrated that the HTT1a transcript had been translated to produce the exon 1 HTT protein. The levels of exon 1 HTT in YAC128 mice, correlated with HTT aggregation, supportive of the hypothesis that exon 1 HTT initiates the aggregation process. Huntingtin-lowering strategies are a major focus of therapeutic development for Huntington's disease. These approaches often target full-length HTT alone and would not be expected to reduce pathogenic exon 1 HTT levels. We have established YAC128 mouse embryonic fibroblast lines and shown that, together with our QuantiGene multiplex assay, these provide an effective screening tool for agents that target HTT transcripts. The effects of current targeting strategies on nuclear RNA clusters are unknown, structures that may have a pathogenic role or alternatively could be protective by retaining HTT1a in the nucleus and preventing it from being translated. In light of recently halted antisense oligonucleotide trials, it is vital that agents targeting HTT1a are developed, and that the effects of HTT-lowering strategies on the subcellular levels of all HTT transcripts and their various HTT protein isoforms are understood.


Assuntos
Doença de Huntington , Humanos , Camundongos , Animais , Doença de Huntington/genética , Proteína Huntingtina/genética , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , RNA Nuclear , Modelos Animais de Doenças
2.
Acta Neuropathol ; 140(1): 63-80, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306066

RESUMO

Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle. Similarly, we find no evidence to suggest dysfunction of signaling pathways that trigger muscle hypertrophy or impairment of the muscle stem cell niche. Instead, we find that skeletal muscle atrophy is characterized by diminished function of the transcriptional regulator Myocyte Enhancer Factor 2 (MEF2), a regulator of myofiber homeostasis. Decreased expression of MEF2 target genes is age- and glutamine tract length-dependent, occurs due to polyQ AR proteotoxicity, and is associated with sequestration of MEF2 into intranuclear inclusions in muscle. Skeletal muscle from R6/2 mice, a model of Huntington disease which develops progressive atrophy, also sequesters MEF2 into inclusions and displays age-dependent loss of MEF2 target genes. Similarly, SBMA patient muscle shows loss of MEF2 target gene expression, and restoring MEF2 activity in AR113Q muscle rescues fiber size and MEF2-regulated gene expression. This work establishes MEF2 impairment as a novel mechanism of skeletal muscle atrophy downstream of toxic polyglutamine proteins and as a therapeutic target for muscle atrophy in these disorders.


Assuntos
Atrofia Bulboespinal Ligada ao X/metabolismo , Atrofia Bulboespinal Ligada ao X/patologia , Fatores de Transcrição MEF2/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Animais , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...